

Converting unstructured interviews to
structured data using AI

Prepared By
Our Sci LLC

Rose Fontana, rose@our-sci.net
Adie Pregenzer, adie@our-sci.net

Greg Austic, greg@our-sci.net

Reporting to
National Agricultural Producers Data Cooperative

University of Lincoln, Nebraska

Summary
We used OpenAPI’s GPTo in ‘Structured Output’ mode to test a Large Language Model’s (AI)
ability to convert raw transcripts of a conversation between a producer and technical assistance
provider concerning in-field trials into structured data (“a database”) following 3 defined JSON
schemas. We tested 20 different prompting strategies (“recipes”) and compared them on 3
different test transcripts, and scored them against a human-generated ‘gold standard’ answer
using 2 different scorers (Rose and Adie).

In the highest quality interview, the range of average accuracy scores across the 3 databases
was 72%, 78% and 81% correct answers, with the best performing recipe in that same interview
yielded 87%, 88%, and 87.5% correct answers respectively.

After analyzing the quality of the AI generated results, our main takeaways were:

1. the quality of the interview was the main driver of the quality structured output by
the AI;

2. more complex prompting did not yield clearly better results (pre-prompts, heavily
structured prompts, XML tagging, etc.);

3. more context and access to history (field names, interview participant names and
roles, etc.) will probably reduce AI hallucinations due to missing information;

4. better defined schemas with fewer open ended questions will probably result in more
accurate results and less hallucinations.

Overall, we feel that with appropriate adjustments based on our learnings, consistent
performance of 90% or higher is possible. This exceeds the performance level minimum
(ranging from 60 - 90%) identified by the NAPDC interview group during needs assessment.

The Gitlab issue containing complete discussion and results can be found here.

mailto:rose@our-sci.net
mailto:adie@our-sci.net
mailto:greg@our-sci.net
https://gitlab.com/our-sci/conventions/common_farm_conventions/-/issues/120#note_2287443269

Introduction
Structured outputs is a feature of OpenAI for GPT-4o models that ensures the responses from
the model adhere to JSON schema. This kind of a feature is most useful for applications where
AI-generated data is pushed into other systems that are structured - like a database. In the
domain of agriculture, this means that unstructured data can be given to a chat model and then
organized in a structured way. This could be very broadly useful, for example: a farmer might
want to organize their inventory by speaking into their phone, locate their equipment using
image-based identification, or (most applicable to this group) to convert a conversation
(transcript or recording) between a technical assistance provider and a producer into a database
of farm management events (seeding or harvest events, on-farm trial details, etc.). These
solutions are possible if AI is good at taking unstructured text and converting it into structured
data. In this experiment, we try to determine which AI prompts and parameters result in
the most successful conversion from unstructured to structured data.

The general concept tested - converting unstructured text into structured data using a data

model.

Methodology
Experimental Setup

This work focused on varying the prompting, pre-processing, and slight GPT-4o model variation
to determine which strategy best achieves our goal of high-quality unstructured to structured
data conversion. We call each of these AI strategies a ‘recipe’.

In order to test each recipe, 3 interviews were conducted which followed a single test case. The
test case was:

A technical assistance provider is working with a producer to help track data about the
producer’s in-field trials and learn from the producers’ in-field trials. The unstructured data is a
single interview in which the technical assistance provider is following up on progress from a
trial with the producer.

The 3 interview transcripts (called “Ben Beans”, “Liz Carrots”, and “Wally Squash”) were made
intentionally with varying quality and contained different types of complexity like duplicate or
incomplete information. These interviews were then converted to interview transcripts using
Otter.ai prior to testing. You can find all the information about each of the 3 transcripts in the
“Baserow - Input Data” link below.

Lastly, we asked the AI to translate the data from these transcripts into 3 separate structured
JSON outputs which had to follow a provided data model in the form of JSON Schema (a JSON
Schema here is functionally equivalent to a database with defined data types or, for practical
purposes, a spreadsheet with defined column names). The schemas can be found in the
“Gitlab - Output Schemas” link below. These 3 schemas were:

1. Interactions - Information about the conversation itself - who was present, the summary,
and next steps.

2. Plantings and Fields - Historical, current, or future information about what farm
management activities in the fields mentioned. Seeding, Harvest, Spray events, etc.

3. Trials - Information about the in-field trial itself, including what is being compared,
independence and dependent variables, and learnings.

Key Links

- Baserow - Input Data
- Baserow - Exported Test Data
- Gitlab - Output Schemas

Recipes and Parameters

A total of 40 recipes were created and of them 20 were tested. The recipes we tested are based
on a mix of parameters we came up with internally, along with some suggested “best practices”
after light research from Anthropic’s Claude and OpenAI’s ChatGPT websites. Replicate runs
were not performed as we did not have time or funding, though we recognize that would
improve the quality of the data.

A full description of the parameters can be found in the appendix, while a full list of recipes can
be found in the “Baserow - Exported Recipes” link.

Scoring

Scoring was calculated as a % of the structured data types that were correctly marked by the AI
(compared to the Gold Standard answer), with additional notes specifying any special types of
failures, repeated failures, or other special information. The evaluation criteria for analyzing
“correctness” of the structured responses was ultimately subjective, but based on two different
considerations deemed most useful in our circumstances.

https://gitlab.com/our-sci/conventions/conventions-under-development/-/tree/main/ag_in_ai_phase_1/exported_from_baserow?ref_type=heads
https://gitlab.com/our-sci/conventions/conventions-under-development/-/tree/main/ag_in_ai_phase_1/exported_from_baserow?ref_type=heads
https://gitlab.com/our-sci/conventions/conventions-under-development/-/tree/main/ag_in_ai_phase_1/schemas?ref_type=heads

1. The data must be valid according to the data model’s requirements - if `boolean` it
must be 0 or 1, for example. If it fails this criteria the data will not be accepted by the
database or other source and is thus not useful.

2. The data has to be useful and correct from an operational management perspective
for producer’s or TAPs who are going to retrieve the data from the database. In both of
these perspectives, the data has to be accurate in that it reflects the reality of operations
as the producer understands.

Generating Final Test Runs
The final results were generated in 2 phases. Initially, using the “Bulk” mode, we ran 20 different
recipes across 3 interview transcripts and associated data, generating 3 structured data outputs
(JSON) each. Scoring was performed by 2 different reviewers (Adie and Rose) and for all runs.

After the initial phase, we found some errors / improvements in our “Gold Standard” outputs
which were used to determine the scoring, so we updated it and re-ran 5 recipes to see how
much the scoring would change, also performed with the “Bulk” mode. All of the results can be
found in the Key Links above under “Baserow - Exported Test Runs”.

Key Links

- Baserow - Exported Test Data
- Bulk Results by Recipe
- Appendix

Technical Setup

The technical setup for testing recipes was first to set up a Hugging Face Spaces application.
This is a framework for quickly and easily creating ML demos, which comes with features that
facilitate this. Gradio is an option for a front-end framework, an open-source Python package
that makes it easy to create and connect to machine learning models, APIs and built-in Python
functions to serve as middleware for easy connecting. Hugging Face Spaces allows you to
swap out machine learning models easily by simply switching an ID or connecting to a different
Hugging Face Inference Endpoint, which makes it an attractive choice for experimentation.
Hugging Face Spaces also makes it easy to be collaborative, by your project being accessible
and running for other users to interact with.

Through this application, we’ve created two separate modes for operation. The first is a “One
Off” mode of operation that is for quick testing and one-off experimentation. The interface is built
through Hugging Face, but uses an embedded SurveyStack Survey. SurveyStack is a flexible
and collaborative research platform for creating, storing and managing surveys and scripts. The
user fills out a survey to set the recipe, picking out each parameter and input data individually
that will be used to create the structured outputs for the 3 schemas (Plantings and Fields,
Interactions, and Trials and Treatments). The AI generated output can be copied out once
completed and viewed.

https://gitlab.com/our-sci/conventions/conventions-under-development/-/tree/main/ag_in_ai_phase_1/exported_from_baserow?ref_type=heads
https://gitlab.com/our-sci/conventions/conventions-under-development/-/tree/main/ag_in_ai_phase_1/results?ref_type=heads
https://huggingface.co/spaces/our-sci/data-translation-experiments
https://app.surveystack.io/groups

The second “Bulk” mode of operation uses Baserow but is still run from Hugging Face. Each
recipe is defined in Baserow, including the prompt texts and parameters. An API call is then
made to Baserow from the Hugging Face Space to pull the recipe’s and run them all in
sequence. It then saves the resulting AI generated JSON outputs in a set of folders.

Key Links

- Hugging Face Space - One Off mode
- Visible as the embedded SurveyStack survey
- Ran with “Create JSONs” button

- Hugging Face Space - Bulk mode
- Visible as a button “bulk
- Ran with “Generate Output Folder and Download” (downloads zipped folder)

* Note - you may need to ‘restart the space’ on arrival to the above links. It may take a few
minutes to initiate the server.

Results
Raw Score analysis

Scoring of the results were compiled by recipe and compared across the 3 different
transcripts. The results were then colored (green, high; red, low) to make comparison faster and
easier. The table shows the score x recipe x transcript x output schema, as well as totals across
each. The first Scoring Run is separated from the 2nd (in which the Gold Standard results were
improved) since the scoring criteria changed between the two.

Based on the raw scores and averages, the best performing transcript was Ben Beans (far left).
The output data schema that performed best varied based on the transcript. Liz Carrots -

https://baserow.io/
https://huggingface.co/spaces/our-sci/data-translation-experiments
https://huggingface.co/spaces/our-sci/data-translation-experiments

Interaction scored very poorly relative to the other schemas in Liz Carrots, while Ben Beans -
Interaction scored very well relative to the other schemas in Ben Beans.

The top 4 recipes based on overall average score are:

Recipe Description Score

36 GPT 4o; No pre-processing; no pre-prompt text; additional background
context to set up the situation when requesting the creation of the
unstructured data.

73%

17 GPT 4o; No pre-processing; no pre-prompt text; simple 1 sentence
prompt when requesting the creation of the unstructured data.

72%

35 Duplicate of Recipe 17 71%

27 Duplicate of Recipe 17 69%

The top 4 recipes based on overall average score for the best performing interview (Ben
Beans) are:

Recipe Description Score

25 GPT 4o; pre-processing with contextual tagging using GPT 4o; simple
1 sentence prompt when requesting the creation of the unstructured
data.

90%

35 (see above) 90%

17 (see above) 87%

36 (see above) 85%

Recipes 35, 17 and 36 were present in both lists. These best performers were also among
the simplest recipes in the list, including no pre-prompt strategies, no pre-processing, and
generally simple prompts when requesting the creation of unstructured data.

Detailed Data Review

An example of one of the structured outputs that are produced from this setup is below, this one
in particular is based on an input interview of a producer and agronomist discussing a trial
involving carrot varieties. This output below was created from ChatGPT based on a combination
of input parameters.

{

 "name": "Unknown Field",

 "description": "Carrot variety trial to assess performance.",

 "plantings": [

 {

 "name": "2024 Carrot Variety Trial",

 "status": "archived",

 "crop": [

 "carrot"

],

 "variety": [

 "unknown"

],

 "logs": [

 {

 "convention": "log--seeding--seeding",

 "date": "2024-06-01",

 "description": "Planted five carrot varieties in the same row for

variety trial."

 },

 {

 "convention": "log--observation",

 "date": "2024-09-01",

 "description": "Harvested carrot varieties for trial and rated based

on yield, appearance, greens, and flavor."

 }

],

 "soil": null,

 "yield_": [

 {

 "quantity": null,

 "quality": "Rated on appearance, greens, flavor, and yield."

 }

]

 }

]

}

The detailed data review deep dive was into the kinds of errors which were produced during the
experiment, which can be found after the appendix, here. The kinds of things that went wrong
ranged from the output schemas having “null” unexpectedly when it could have produced data,
missing key data that was expected to be pulled, or hallucinations about data which wasn’t
provided in the interview at all. There were some cases of additional data being inserted that
weren't expected, which in some cases helped to improve the subjective “Gold Standard” by
providing a perspective that wasn’t previously considered. In some cases, this additional data
was wrong or based on syntax mistakes in the otter.ai transcript of the interview.

In this detailed data review, we can see that there are some kinds of errors which are preferred
to others. For example, if the model isn’t certain (and has a low probability of being correct), it
should favor the field being “null” or blank as opposed to hallucinating data. These kinds of
errors can be fixed more easily and seen in a database.

Discussion + Conclusions
If the more complex and advanced parameters (like using the COSTAR framework, or XML
tagging) were more effective, we should have seen some evidence of it. However, we clearly did
not. In fact, the consistently highest scoring recipes were the simplest ones, with the exception
of recipe 36, which adds some limited situational context. Conclusion: This recipe framework
will remain important as new parameters and options may appear and models may change to
take advantage of other strategies, however, among those tested today with this data it is clear
that the simple recipes were most successful.

The clearest differences were across the transcripts themselves, not across the recipes. This
indicates that high quality transcripts will result in higher quality outcomes (garbage in, garbage
out), regardless of parameters. Conclusion: Focus future efforts on improving the quality of the
transcript through training or support materials (printed lists of the database to not miss items).

In reviewing specific AI failures, we also identified more hallucination or confusion when the AI
was referencing something for which it had no context (existing fields, plantings, the roles of the
people in the discussion, etc.). We propose that with more accurate historical context AI will be
less likely to hallucinate known facts as well as less likely to confuse relationships between new
information and the historical background. The AI could access databases and query them prior
to the conversation, using the context prepended to the user's prompt as background
information. Conclusion: Providing AI access to a database of people/roles and a database of
planting/field information will probably help reduce hallucinations and improve translation quality.

Lastly, also in reviewing specific AI failures, it appears the AI is more likely to hallucinate or
make mistakes when the data model is unspecific. For example, nearly half of the interactions
data model was expecting a date in MM/DD/YYYY format. The interviews were not specific on
an actual day for this date, so in the majority of cases, instead of stating null as was expected,
the model hallucinated a random day. Also in the interactions schema, there was a concept of a
'role', which the model could pick from a list between "partner", "staff", "agronomist", or "other".

The descriptions for each provided some insight to each role, but based on the output data not
enough for the model to appropriately determine which one should be used when. Conclusion:
Using well described, specific and well separated data models may reduce hallucinations and
increase the rate of capturing nuanced information in a usable way.

Questions and Recommendations

Questions

The questions / discussions before proceeding are:

1. Interview quality, and thus interviewer training, is really important. How likely is it that
interviewers, or others inputting voice to text data or other types of information, can be
trained and will follow training? What are the limits of what they would find useful or
reasonable?

2. Investing in high quality schemas will make a difference. We have well defined, high
quality schemas around farm management data with the Common Farm Convention.
However, we also know that the flexibility to quickly create (for example) a spreadsheet
as the data model can make this technology more accessible and flexible. What are the
use cases we should focus on (longer-term, high quality CFC, shorter term and more
immediately, flexible, but maybe lower quality (?) spreadsheets)?

3. Let’s review translations and confirm quality minimums. Are these translations good
enough? Are the types of failures acceptable, or particularly bad (making the AI tool not
worth it).

Recommendations

Overall, we feel that with appropriate adjustments based on what we’ve learned and the list of
Conclusions above, consistent performance of 90% or higher is possible. This exceeds the
performance level minimum (ranging from 60 - 90%) identified by the NAPDC interview group
during needs assessment. We feel that continuing progress could achieve real, usable MVPs
by the NAPDC cohort (subject also to the questions above). Given that, we recommend:

1. Further investigate Claude or other direct JSON Schema options. If we want a great deal
of flexibility, we need to avoid the conversion of JSON Schema → Python classes
needed currently to utilize GPT o1’s Structured Data Mode. If we avoid this step, the AI
solution could be ‘plug and play’ relative to the data model, allowing for more testing on
more data models by more people more easily.

a. Also add a validation function accessible by Claude.
2. Constrain the interviews - give the TAP a printed, easy to read version of the data model

to review during the interview, and teach the interviewer to prompt key pieces of
information.

a. Improve the quality of passed metadata - so the current date, a DB of people +
roles, list of fields and plantings from their DB.

3. Improve the schemas or just use Common Farm Convention schemas so the data is
specific and well described.

4. Design around specific input SOPs - for example, I want to add new logs / assets
through an interview which may reference historical fields and plantings (which can be
pulled in from my FMIS). In this case, no editing, no multiple back-and-forths or queries,
references are all present or generated on the fly. Or - I want to add a new row to the
baserow database and may want to reference another base which is available in
context.

5. We should pull from the database for context to populate more accurate context.
Specifically, a list of names/roles, a list of fields, and a list of plantings. Also tools for
validation

Future Outcomes
Assuming a completion of the recommendations and some level of funding (dependent on exact
applications, feedback from the group, and scope), we believe that we can achieve the
following:

1. Create at least one real world, usable MVP translating unstructured data to structured
data similar to the example cases described above.

2. Assemble the tools and SOPs to make creating new AI unstructured -> structured data
MVP applications significantly easier to achieve, faster to evaluate, and lower risk of
unexpected failure.

References
https://arxiv.org/pdf/2404.05499
Guiding Large Language Models to Generate Computer-Parsable Content

https://arxiv.org/pdf/2404.05499

Appendix

Full Parameter Description
1. Schema Processing Model

a. The schema processing model refers to the model which is used to generate the
JSON schema output. We used the most up to date versions of OpenAI’s
chatGPT which were capable of “JSON mode” structured output. One of the
model’s was 'gpt-4o-2024-08-06' which is the ‘full model’ with higher processing
capabilities and 'gpt-4o-mini-2024-07-18' a smaller, faster model.

2. Pre-processing Strategy
a. For some of the test recipes, we pre-processed the data prior to creating the

JSON schema. There were pre-processing strategies which first processed the
data in some manner through an LLM (from the options of the GPT models
above). There were also pre-processing strategies which involved either otter.ai
or a human summarizing the interaction as input.

b. Full pre-processing strategies attempted:
i. Summarization pre-processing (through GPT model):

1. You are given a block of text containing detailed farm
management data, interactions, or trial and treatment descriptions.
Your task is to generate a concise summary of the text, focusing
on the main points and removing unnecessary details. Ensure that
the summary captures the essential information that will be useful
for the next model to process it into structured data.

a. The summary should include:
● The primary field or subject (e.g., farm name,

interaction, trial name)
● Key attributes or details (e.g., crops, treatments,

soil, participants)
● Any specific action or outcome (e.g., meeting

dates, crop yield, next steps)

Keep the summary brief and informative, maintaining the
most important information for further processing.

ii. Otter.ai summary (provided from otter.ai interface automatically)
iii. Greg summary (interaction was summarized by the human Greg as

input)
iv. Specific Field Extraction:

1. You are given a block of text containing detailed information. Your
task is to extract and structure the following specific fields:

a. For Farm Management Data:
● Field Name: The name of the field.

● Description: Any description of the field (e.g.,
planting year, soil conditions).

● Crops: The types of crops planted (e.g., squash,
soybeans).

● Soil Conditions: The type of soil described (e.g.,
loam, sandy).

● Yield: The quantity and quality of the yield (e.g.,
average, some early rotting).

For Interaction Data:

● Date: The date of the interaction.
● Next Meeting: Any future meeting dates or ranges.
● Next Steps: The follow-up actions mentioned.
● Summary: A brief summary of the interaction.
● People: Names and roles of people involved.

For Trial and Treatment Data:

● Trial Name: The name of the trial.
● Description: A description of the trial.
● Treatments: The treatments used in the trial.
● Crops: The crops involved in the trial.

Please extract these fields and return them in a structured
format. If any fields are missing, leave them blank.

v. Contextual Tagging:

You are given a block of text. Your task is to tag each part of the text with
appropriate labels, such as:

● Location: Tag locations where mentioned.
● Date: Tag dates or time ranges.
● Action: Tag actions or verbs that indicate activity (e.g., "planting",

"harvesting").

Return the text with these labels inserted, marking the relevant parts
clearly.

c. Prompting Strategy:
i. The last parameter we tested was prompting strategies, which was similar

to our pre-processing prompting strategy, but included a wider range of
options. We also had to ensure we had different prompts for each of the
schemas, which are slightly tweaked for the differences in wording

between the Plantings and Fields Schema, Interactions Schema, and
Treatments Schema.:

1. Baseline Approach (Default)
a. Plantings and Fields:

i. Please extract the farm management data.
b. Interactions:

i. Please extract the interactions and people data.
c. Treatments:

i. Please extract the trials and treatment data.
2. Baseline Approach - Additional Context

a. Plantings and Fields:
i. The following is a written transcript of an interaction

between a Technical Assistance Provider (TAP)
and a producer. The people in this interaction are
discussing an experiment. You will be creating
structured JSON output based on the discussion of
the experiment, which should result in a structured
JSON schema for the fields and plantings
discussed. This JSON schema should include
extracted details like the field name, description of
the field, the types of crops and plantings and soil
conditions.

b. Interactions:
i. The following is a written transcript of an interaction

between a Technical Assistance Provider (TAP)
and a producer. The people in this interaction are
discussing an experiment. You will be creating
structured JSON output based on the discussion of
the experiment, which should result in a structured
JSON schema for the interaction discussed. This
JSON schema should include extracted details like
the meeting date, the date of the next meeting, a
list of people involved in the interaction along with
their roles, and a summary of the interaction.

c. Treatments:
i. The following is a written transcript of an interaction

between a Technical Assistance Provider (TAP)
and a producer. The people in this interaction are
discussing an experiment. You will be creating
structured JSON output based on the discussion of
the experiment, which should result in a structured
JSON schema for the trials and treatments
discussed. This JSON schema should include
extracted details like the name of the trial, a

description of the trial, the treatments that are being
tested in the trial, and a list of the crops involved in
each treatment.

3. Full Additional Context - Rules and Constraints
a. Plantings and Fields:

The following is a written transcript of an interaction
between a Technical Assistance Provider (TAP) and a
producer. The people in this interaction are discussing an
experiment. You will be creating structured JSON output
based on the discussion of the experiment, which should
result in a structured JSON schema for the fields and
plantings discussed. This JSON schema should include
extracted details like the field name, description of the field,
the types of crops and plantings and soil conditions.

Rules and Constraints:

1. There should be a separate Planting for each
FarmActivities if there is a different crop type, day
or time or crop variety. This is an account of each
time a Planting occurs as an activity.

2. Each planting must have a Planting Log with the
convention = "log--activity--planting".

3. For each application of an Input like herbicides,
irrigation, or fertilizers are discussed, create Input
logs with the appropriate conventions:
Herbicide/Pesticide:
log--input--herbicide_or_pesticide
Irrigation: log--input--irrigation
Organic Matter: log--input--organic_matter

4. Tillage Log: If tillage is mentioned, create a log with
convention = "log--activity--tillage"

5. Irrigation Log: If irrigation is discussed, create a log
with convention = "log--input--irrigation"

6. Solarization Log: For solarization, use convention =
"log--activity--solarization"

b. Interactions:

The following is a written transcript of an interaction
between a Technical Assistance Provider (TAP) and a
producer. The people in this interaction are discussing an
experiment. You will be creating structured JSON output
based on the discussion of the experiment, which should
result in a structured JSON schema for the interaction

discussed. This JSON schema should include extracted
details like the meeting date, the date of the next meeting,
a list of people involved in the interaction along with their
roles, and a summary of the interaction.

Rules and Constraints:

1. There should be a separate Person for each
different Person mentioned during the interaction
who is involved with the current interaction.

2. The nextMeeting of the Interactions should be the
date that is scheduled for the producer to next meet
with the TAP. If none is explicitly provided, the
nextMeeting date should be null.

3. The nextMeeting of the Interactions should occur
after the current meeting date.

4. The nextSteps should be a list of individual steps
that the people involved in the interaction will have
to take to complete the trial which will occur after
the interview.

5. The summary should be everything that occurred in
the interaction, taking in account special attention
to the field and plantings and treatments and
outcomes of the trial taking place.

c. Treatments:

The following is a written transcript of an interaction
between a Technical Assistance Provider (TAP) and a
producer. The people in this interaction are discussing an
experiment. You will be creating structured JSON output
based on the discussion of the experiment, which should
result in a structured JSON schema for the trials and
treatments discussed. This JSON schema should include
extracted details like the name of the trial, a description of
the trial, the treatments that are being tested in the trial,
and a list of the crops involved in each treatment.

Rules and Constraints:

1. For each independent variable which is being
tested in the trial, there should be a Treatment.

2. Each Treatment should contain a list of crops and
fields involved in the specific variables being tested
in the Treatment. For example, if the amount of
irrigation is being tested, there should be a

Treatment with Variables accounting for the
controlled variables, which are unchanging, and the
independent variable which is the one specifically
being tested in the Treatment.

3. Each Variables outcome should be the projected
hypothesized outcome based on the what the
people theorized would occur during the interaction,
if explicitly mentioned.

4. Example-Driven
a. Plantings and Fields:

i. Prompt:
"Please extract farm management data, including
field name, description, crop types, and soil
conditions in a structured JSON format."

ii. Example Input:
"North Field, planted in 2016, grew acorn squash in
2023. Soil: loam, sandy in spots. Yield: average,
some early rotting."

iii. Example Output (JSON):
iv. {

"name": "North Field",
"description": "Planted in 2016",
"plantings": {
"name": "2023 Squash",
"crop": ["squash"],
"variety": ["acorn squash"],
"soil": {
"structure": ["loam", "sand"]
},
"yield": {
"quantity": "average",
"quality": "some early rotting"
}
}
}

b. Interactions:
i. Prompt:

"Please extract interaction data including date,
participants, next meeting, next steps, and a
summary in JSON format."

ii. Example Input:
"Meeting with Ben Austic on 2023-10-25. Next
meeting: 2023-11-15 to 2023-12-25. Discuss
soybean trial results and follow up with Ben."

iii. Example Output (JSON):
iv. {

"date": "2023-10-25",
"nextMeeting": "2023-11-15 to 2023-12-25",
"nextSteps": [
"Follow up with Ben Austic to evaluate soybean
trial."
],
"summary": "Meeting with Ben Austic to discuss
soybean trial results.",
"people": {
"name": "Ben Austic",
"role": "partner"
}
}

c. Treatments:
i. Prompt:

"Please extract trial and treatment data including
trial name, description, treatments, and crops in
JSON format."

ii. Example Input:
"Ben's soybean trial compares two seedling
treatments: fungicide, herbicide, and biologicals for
early immune boost. Trial includes soybeans."

iii. Example Output (JSON):
iv. {

"name": "Ben's Soybean Seedling Trial",
"description": "Comparing two seedling treatments
with fungicide, herbicide, and biologicals.",
"treatments": {
"name": "Seedling Treatment",
"description": "Includes fungicide, herbicide,
biologicals for immune boost.",
"crops": ["Soybeans"]
}
}

5. Step-by-Step Instructional
a. Plantings:

i. Please extract the farm management data. Identify
the activity mentioned (e.g., planting, irrigation,
harvest, etc.).
Extract the date of the activity.
Note the weather conditions during the activity.
Identify the soil type or field conditions mentioned.

Summarize the activity, including all of the details
above.

b. Interactions:
i. Please extract the interactions and people data.

Identify the people mentioned in the text and their
roles (e.g., partner, agronomist, staff).
Note the date of the interaction.
Summarize the content of the interaction (what was
discussed or decided).
Extract any next steps or follow-up tasks mentioned
in the text.
Return the information in a structured format with
names, roles, and any tasks or meetings
scheduled.

c. Treatments:
i. Please extract the trials and treatments data.

Identify the trial name and description.
Extract the date and treatments applied (e.g.,
herbicide, irrigation).
List the crops and fields involved in the treatment.
Note any expected outcomes or observations
related to the treatment.
Return the extracted details in a structured format
including the trial name, treatments, crops, and
expected outcomes.

6. Role-Specific (Agronomist)
a. Plantings and Fields:

i. As an agronomist, you need to extract farm
management data. Focus on operational activities
and key practices. For each activity, include the
crop types involved, the date, the specific action
(e.g., seeding, irrigation), and the status of the
activity (e.g., ongoing, completed). Capture any
relevant observations, such as soil conditions or
pest presence, and organize the data into a
structured JSON format.

b. Interactions:
i. As an agronomist, extract data related to

interactions between farm staff. Focus on key
meetings, collaborations, and future tasks. Include
names of people involved, their roles, and any
important follow-up actions. Format the data into a
structured JSON format to capture the relevant
details.

c. Treatments:
i. As an agronomist, you are responsible for

extracting trials and treatment data. Focus on
ongoing field trials, including the treatments used,
the crops involved, and the objectives of the trial.
Ensure to capture the treatment details, including
any chemicals or biological agents, and their effects
on crop growth. Present the data in a structured
JSON format for easy analysis.

7. Role-Specific (Data Scientist)
a. Plantings and Fields:

i. As a data scientist, your task is to extract farm
management data and format it for analysis. Focus
on identifying key operational activities, such as
seeding or irrigation, and provide data on the crop
types involved, date, and the status of each activity.
Ensure that the data is organized in a way that can
be easily analyzed for trends and decision-making.

b. Interactions:
i. As a data scientist, you will extract interaction data

between farm staff to help analyze team dynamics
and decision-making. Capture details on meetings,
the roles of attendees, and any action items
discussed. The data should be structured in a
JSON format for easy integration into workflow
analysis tools

c. Treatments:
i. As a data scientist, you need to extract and analyze

trial and treatment data. Focus on ongoing trials,
capturing the types of treatments used, the crops
involved, and the desired outcomes. Ensure that
you gather detailed information on all experimental
factors, including treatment variations, to facilitate a
comprehensive analysis of their effectiveness.

8. Error Detection:
a. Plantings and Fields:

i. Please extract the farm management data.
If any important detail (such as the date, activity
type, or crop) is missing from the text, flag it as
incomplete.
Also, check that the activity has a clear description.
If there are discrepancies in soil types or field
descriptions, indicate them as potential errors for
review.

b. Interactions:
i. Please extract the interactions and people data.

If the roles or names of the participants are missing
or unclear, flag them as incomplete.
Verify that the date and next steps are clearly
mentioned; if they are absent or ambiguous,
highlight them for review.

c. Trials and Treatments:
i. Please extract the trials and treatments data.

Ensure that the trial name and description are
complete. If the treatment type, date, or expected
outcomes are missing or unclear, flag them as
errors.
If the crops or fields involved are not specified,
mark it as incomplete.

9. CO-STAR Framework
a. Plantings and Fields:

CONTEXT

You are tasked with extracting farm management data,
including details about activities such as planting, irrigation,
and harvesting, as well as information on crops, soil
conditions, and weather. This data is used for farm
reporting and analysis.

##############

OBJECTIVE

Your goal is to extract and structure farm management
data:

● Identify activities like seeding, irrigation, and
harvesting.

● Extract the date of each activity.
● Note the crops involved in the activity.
● Extract information regarding soil conditions,

structure, and biology.
● Capture any relevant weather information during

the activity.
● Summarize yield information, including quantity and

quality.

##############

STYLE

Provide the data in a structured format, ensuring that all
relevant details are captured concisely and without
unnecessary elaboration. Focus on accuracy and clarity.

##############

TONE

The tone should be neutral, focusing on providing an
accurate and objective summary of farm activities and
conditions.

##############

AUDIENCE

This data is intended for agronomists, farm managers, and
data analysts who need a structured overview of farm
activities for reporting and decision-making.

##############

RESPONSE

Provide the extracted data in JSON format, following the
provided schema for farm management. Ensure that all
relevant fields are populated and the data is easy to
interpret.

b. Interactions:

CONTEXT

You are tasked with extracting interactions and people data
from text that describes farm-related meetings,
collaborations, and follow-up actions. This includes
identifying people, their roles, and summarizing what was
discussed or decided during the interaction.

##############

OBJECTIVE

Your goal is to extract and structure interactions and
people data:

● Identify the names of people involved in the
interaction.

● Extract the roles of the people mentioned (e.g.,
partner, agronomist, staff).

● Note the date of the interaction or meeting.
● Summarize the content of the interaction, such as

what was discussed, decided, or planned.
● Identify any next steps or follow-up tasks that were

agreed upon.

##############

STYLE

The style should be factual and concise, capturing the key
details of the interaction without unnecessary elaboration.
Focus on the essential points of the discussion and
follow-up actions.

##############

TONE

The tone should remain neutral and objective, focusing on
providing an accurate summary of the interaction and any
planned follow-up actions.

##############

AUDIENCE

This data is intended for farm managers, team leads, or
other personnel tracking team interactions and ensuring
follow-up on tasks or meetings.

##############

RESPONSE

Provide the extracted interaction and people data in JSON
format, following the provided schema. Ensure that all
fields are filled accurately and the information is easy to
interpret.

c. Treatments:

CONTEXT

You are tasked with extracting data related to agricultural
trials and treatments, including the details of the trials, the
treatments applied, and the crops involved. This data is
used to monitor and analyze the effectiveness of different
treatments on crop growth.

##############

OBJECTIVE

Your goal is to extract and structure trial and treatment
data:

● Identify the name and description of the trial.
● Extract the date of the trial and any treatments

applied (e.g., herbicides, biologicals).
● Note the crops and fields involved in the trial.
● Capture any expected outcomes or observations

related to the trial and treatments.

##############

STYLE

The style should be clear and focused, with descriptions
that are concise and to the point. Ensure that all key details
are captured in a structured manner.

##############

TONE

The tone should be objective and technical, providing an
accurate and neutral report of the trials, treatments, and
expected outcomes.

##############

AUDIENCE

This data is intended for agricultural researchers,
agronomists, and farm managers who are tracking the
progress and outcomes of field trials.

##############

RESPONSE

Return the extracted trial and treatment data in JSON
format, adhering to the provided schema. Ensure all
relevant fields are populated and the data is clearly
structured.

	Converting unstructured interviews to structured data using AI
	Summary
	Introduction
	Methodology
	Results
	Discussion + Conclusions
	Questions and Recommendations
	Future Outcomes
	References
	
	Appendix
	Full Parameter Description

