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Summary 
We used OpenAPI’s GPTo in ‘Structured Output’ mode to test a Large Language Model’s (AI) 
ability to convert raw transcripts of a conversation between a producer and technical assistance 
provider concerning in-field trials into structured data (“a database”) following 3 defined JSON 
schemas.  We tested 20 different prompting strategies (“recipes”) and compared them on 3 
different test transcripts, and scored them against a human-generated ‘gold standard’ answer 
using 2 different scorers (Rose and Adie).  
  
In the highest quality interview, the range of average accuracy scores across the 3 databases 
was 72%, 78% and 81% correct answers, with the best performing recipe in that same interview 
yielded 87%, 88%, and 87.5% correct answers respectively. 
 
After analyzing the quality of the AI generated results, our main takeaways were:  
 

1. the quality of the interview was the main driver of the quality structured output by 
the AI; 

2. more complex prompting did not yield clearly better results (pre-prompts, heavily 
structured prompts, XML tagging, etc.);  

3. more context and access to history (field names, interview participant names and 
roles, etc.) will probably reduce AI hallucinations due to missing information; 

4. better defined schemas with fewer open ended questions will probably result in more 
accurate results and less hallucinations. 

 
Overall, we feel that with appropriate adjustments based on our learnings, consistent 
performance of 90% or higher is possible. This exceeds the performance level minimum 
(ranging from 60 - 90%) identified by the NAPDC interview group during needs assessment. 
 
The Gitlab issue containing complete discussion and results can be found here. 

mailto:rose@our-sci.net
mailto:adie@our-sci.net
mailto:greg@our-sci.net
https://gitlab.com/our-sci/conventions/common_farm_conventions/-/issues/120#note_2287443269


 

Introduction  
Structured outputs is a feature of OpenAI for GPT-4o models that ensures the responses from 
the model adhere to JSON schema. This kind of a feature is most useful for applications where 
AI-generated data is pushed into other systems that are structured - like a database. In the 
domain of agriculture, this means that unstructured data can be given to a chat model and then 
organized in a structured way. This could be very broadly useful, for example: a farmer might 
want to organize their inventory by speaking into their phone, locate their equipment using 
image-based identification, or (most applicable to this group) to convert a conversation 
(transcript or recording) between a technical assistance provider and a producer into a database 
of farm management events (seeding or harvest events, on-farm trial details, etc.). These 
solutions are possible if AI is good at taking unstructured text and converting it into structured 
data. In this experiment, we try to determine which AI prompts and parameters result in 
the most successful conversion from unstructured to structured data. 

 
The general concept tested - converting unstructured text into structured data using a data 

model. 

Methodology 
Experimental Setup 
 
This work focused on varying the prompting, pre-processing, and slight GPT-4o model variation 
to determine which strategy best achieves our goal of high-quality unstructured to structured 
data conversion. We call each of these AI strategies a ‘recipe’. 
 
In order to test each recipe, 3 interviews were conducted which followed a single test case. The 
test case was: 
 
A technical assistance provider is working with a producer to help track data about the 
producer’s in-field trials and learn from the producers’ in-field trials. The unstructured data is a 
single interview in which the technical assistance provider is following up on progress from a 
trial with the producer. 



 

 
The 3 interview transcripts (called “Ben Beans”, “Liz Carrots”, and “Wally Squash”) were made 
intentionally with varying quality and contained different types of complexity like duplicate or 
incomplete information. These interviews were then converted to interview transcripts using 
Otter.ai prior to testing. You can find all the information about each of the 3 transcripts in the 
“Baserow - Input Data” link below. 
 
Lastly, we asked the AI to translate the data from these transcripts into 3 separate structured 
JSON outputs which had to follow a provided data model in the form of JSON Schema (a JSON 
Schema here is functionally equivalent to a database with defined data types or, for practical 
purposes, a spreadsheet with defined column names).  The schemas can be found in the 
“Gitlab - Output Schemas” link below. These 3 schemas were: 
 

1. Interactions - Information about the conversation itself - who was present, the summary, 
and next steps. 

2. Plantings and Fields - Historical, current, or future information about what farm 
management activities in the fields mentioned. Seeding, Harvest, Spray events, etc. 

3. Trials - Information about the in-field trial itself, including what is being compared, 
independence and dependent variables, and learnings. 

 
Key Links 

- Baserow - Input Data 
- Baserow - Exported Test Data 
- Gitlab - Output Schemas 

 
Recipes and Parameters 
 
A total of 40 recipes were created and of them 20 were tested. The recipes we tested are based 
on a mix of parameters we came up with internally, along with some suggested “best practices” 
after light research from Anthropic’s Claude and OpenAI’s ChatGPT websites. Replicate runs 
were not performed as we did not have time or funding, though we recognize that would 
improve the quality of the data. 
 
A full description of the parameters can be found in the appendix, while a full list of recipes can 
be found in the “Baserow - Exported Recipes” link. 
 
Scoring 
 
Scoring was calculated as a % of the structured data types that were correctly marked by the AI 
(compared to the Gold Standard answer), with additional notes specifying any special types of 
failures, repeated failures, or other special information. The evaluation criteria for analyzing 
“correctness” of the structured responses was ultimately subjective, but based on two different 
considerations deemed most useful in our circumstances. 
 

https://gitlab.com/our-sci/conventions/conventions-under-development/-/tree/main/ag_in_ai_phase_1/exported_from_baserow?ref_type=heads
https://gitlab.com/our-sci/conventions/conventions-under-development/-/tree/main/ag_in_ai_phase_1/exported_from_baserow?ref_type=heads
https://gitlab.com/our-sci/conventions/conventions-under-development/-/tree/main/ag_in_ai_phase_1/schemas?ref_type=heads


 

1. The data must be valid according to the data model’s requirements - if `boolean` it 
must be 0 or 1, for example. If it fails this criteria the data will not be accepted by the 
database or other source and is thus not useful. 

2. The data has to be useful and correct from an operational management perspective 
for producer’s or TAPs who are going to retrieve the data from the database. In both of 
these perspectives, the data has to be accurate in that it reflects the reality of operations 
as the producer understands.  

 
Generating Final Test Runs 
The final results were generated in 2 phases. Initially, using the “Bulk” mode, we ran 20 different 
recipes across 3 interview transcripts and associated data, generating 3 structured data outputs 
(JSON) each. Scoring was performed by 2 different reviewers (Adie and Rose) and for all runs.   
 
After the initial phase, we found some errors / improvements in our “Gold Standard” outputs 
which were used to determine the scoring, so we updated it and re-ran 5 recipes to see how 
much the scoring would change, also performed with the “Bulk” mode. All of the results can be 
found in the Key Links above under “Baserow - Exported Test Runs”. 
 
Key Links 

- Baserow - Exported Test Data 
- Bulk Results by Recipe 
- Appendix 

 
Technical Setup 
 
The technical setup for testing recipes was first to set up a Hugging Face Spaces application. 
This is a framework for quickly and easily creating ML demos, which comes with features that 
facilitate this. Gradio is an option for a front-end framework, an open-source Python package 
that makes it easy to create and connect to machine learning models, APIs and built-in Python 
functions to serve as middleware for easy connecting. Hugging Face Spaces allows you to 
swap out machine learning models easily by simply switching an ID or connecting to a different 
Hugging Face Inference Endpoint, which makes it an attractive choice for experimentation. 
Hugging Face Spaces also makes it easy to be collaborative, by your project being accessible 
and running for other users to interact with.  
 
Through this application, we’ve created two separate modes for operation. The first is a “One 
Off” mode of operation that is for quick testing and one-off experimentation. The interface is built 
through Hugging Face, but uses an embedded SurveyStack Survey. SurveyStack is a flexible 
and collaborative research platform for creating, storing and managing surveys and scripts. The 
user fills out a survey to set the recipe, picking out each parameter and input data individually 
that will be used to create the structured outputs for the 3 schemas (Plantings and Fields, 
Interactions, and Trials and Treatments). The AI generated output can be copied out once 
completed and viewed. 
 

https://gitlab.com/our-sci/conventions/conventions-under-development/-/tree/main/ag_in_ai_phase_1/exported_from_baserow?ref_type=heads
https://gitlab.com/our-sci/conventions/conventions-under-development/-/tree/main/ag_in_ai_phase_1/results?ref_type=heads
https://huggingface.co/spaces/our-sci/data-translation-experiments
https://app.surveystack.io/groups


 

The second “Bulk” mode of operation uses Baserow but is still run from Hugging Face. Each 
recipe is defined in Baserow, including the prompt texts and parameters. An API call is then 
made to Baserow from the Hugging Face Space to pull the recipe’s and run them all in 
sequence. It then saves the resulting AI generated JSON outputs in a set of folders. 

 
Key Links 

- Hugging Face Space - One Off mode 
- Visible as the embedded SurveyStack survey 
- Ran with “Create JSONs” button 

- Hugging Face Space - Bulk mode 
- Visible as a button “bulk 
- Ran with “Generate Output Folder and Download” (downloads zipped folder) 

 
* Note - you may need to ‘restart the space’ on arrival to the above links.  It may take a few 
minutes to initiate the server. 

Results 
Raw Score analysis 
 

Scoring of the results were compiled by recipe and compared across the 3 different 
transcripts. The results were then colored (green, high; red, low) to make comparison faster and 
easier. The table shows the score x recipe x transcript x output schema, as well as totals across 
each. The first Scoring Run is separated from the 2nd (in which the Gold Standard results were 
improved) since the scoring criteria changed between the two. 
 

 
 
Based on the raw scores and averages, the best performing transcript was Ben Beans (far left).  
The output data schema that performed best varied based on the transcript. Liz Carrots - 

https://baserow.io/
https://huggingface.co/spaces/our-sci/data-translation-experiments
https://huggingface.co/spaces/our-sci/data-translation-experiments


 

Interaction scored very poorly relative to the other schemas in Liz Carrots, while Ben Beans - 
Interaction scored very well relative to the other schemas in Ben Beans. 
 
The top 4 recipes based on overall average score are: 
 

Recipe Description Score 

36 GPT 4o; No pre-processing; no pre-prompt text; additional background 
context to set up the situation when requesting the creation of the 
unstructured data. 

73% 

17 GPT 4o; No pre-processing; no pre-prompt text; simple 1 sentence 
prompt when requesting the creation of the unstructured data. 

72% 

35 Duplicate of Recipe 17 71% 

27 Duplicate of Recipe 17 69% 

 
 
The top 4 recipes based on overall average score for the best performing interview (Ben 
Beans) are: 
 

Recipe Description Score 

25 GPT 4o; pre-processing with contextual tagging using GPT 4o; simple 
1 sentence prompt when requesting the creation of the unstructured 
data. 

90% 

35 (see above) 90% 

17 (see above) 87% 

36 (see above) 85% 

 
Recipes 35, 17 and 36 were present in both lists. These best performers were also among 
the simplest recipes in the list, including no pre-prompt strategies, no pre-processing, and 
generally simple prompts when requesting the creation of unstructured data. 
 
Detailed Data Review 
 
An example of one of the structured outputs that are produced from this setup is below, this one 
in particular is based on an input interview of a producer and agronomist discussing a trial 
involving carrot varieties. This output below was created from ChatGPT based on a combination 
of input parameters.  
 



 

{ 

  "name": "Unknown Field", 

  "description": "Carrot variety trial to assess performance.", 

  "plantings": [ 

    { 

      "name": "2024 Carrot Variety Trial", 

      "status": "archived", 

      "crop": [ 

        "carrot" 

      ], 

      "variety": [ 

        "unknown" 

      ], 

      "logs": [ 

        { 

          "convention": "log--seeding--seeding", 

          "date": "2024-06-01", 

          "description": "Planted five carrot varieties in the same row for 

variety trial." 

        }, 

        { 

          "convention": "log--observation", 

          "date": "2024-09-01", 

          "description": "Harvested carrot varieties for trial and rated based 

on yield, appearance, greens, and flavor." 

        } 

      ], 

      "soil": null, 

      "yield_": [ 

        { 

          "quantity": null, 

          "quality": "Rated on appearance, greens, flavor, and yield." 

        } 

      ] 

    } 

  ] 

} 

 



 

The detailed data review deep dive was into the kinds of errors which were produced during the 
experiment, which can be found after the appendix, here. The kinds of things that went wrong 
ranged from the output schemas having “null” unexpectedly when it could have produced data, 
missing key data that was expected to be pulled, or hallucinations about data which wasn’t 
provided in the interview at all. There were some cases of additional data being inserted that 
weren't expected, which in some cases helped to improve the subjective “Gold Standard” by 
providing a perspective that wasn’t previously considered. In some cases, this additional data 
was wrong or based on syntax mistakes in the otter.ai transcript of the interview.  
 
In this detailed data review, we can see that there are some kinds of errors which are preferred 
to others. For example, if the model isn’t certain (and has a low probability of being correct), it 
should favor the field being “null” or blank as opposed to hallucinating data. These kinds of 
errors can be fixed more easily and seen in a database.  

Discussion + Conclusions 
If the more complex and advanced parameters (like using the COSTAR framework, or XML 
tagging) were more effective, we should have seen some evidence of it. However, we clearly did 
not. In fact, the consistently highest scoring recipes were the simplest ones, with the exception 
of recipe 36, which adds some limited situational context. Conclusion: This recipe framework 
will remain important as new parameters and options may appear and models may change to 
take advantage of other strategies, however, among those tested today with this data it is clear 
that the simple recipes were most successful. 
 
The clearest differences were across the transcripts themselves, not across the recipes. This 
indicates that high quality transcripts will result in higher quality outcomes (garbage in, garbage 
out), regardless of parameters. Conclusion: Focus future efforts on improving the quality of the 
transcript through training or support materials (printed lists of the database to not miss items). 
 
In reviewing specific AI failures, we also identified more hallucination or confusion when the AI 
was referencing something for which it had no context (existing fields, plantings, the roles of the 
people in the discussion, etc.). We propose that with more accurate historical context AI will be 
less likely to hallucinate known facts as well as less likely to confuse relationships between new 
information and the historical background. The AI could access databases and query them prior 
to the conversation, using the context prepended to the user's prompt as background 
information.  Conclusion: Providing AI access to a database of people/roles and a database of 
planting/field information will probably help reduce hallucinations and improve translation quality. 
 
Lastly, also in reviewing specific AI failures, it appears the AI is more likely to hallucinate or 
make mistakes when the data model is unspecific. For example, nearly half of the interactions 
data model was expecting a date in MM/DD/YYYY format. The interviews were not specific on 
an actual day for this date, so in the majority of cases, instead of stating null as was expected, 
the model hallucinated a random day. Also in the interactions schema, there was a concept of a 
'role', which the model could pick from a list between "partner", "staff", "agronomist", or "other". 



 

The descriptions for each provided some insight to each role, but based on the output data not 
enough for the model to appropriately determine which one should be used when. Conclusion: 
Using well described, specific and well separated data models may reduce hallucinations and 
increase the rate of capturing nuanced information in a usable way. 

Questions and Recommendations 
 
Questions 
 
The questions / discussions before proceeding are: 

1. Interview quality, and thus interviewer training, is really important. How likely is it that 
interviewers, or others inputting voice to text data or other types of information, can be 
trained and will follow training? What are the limits of what they would find useful or 
reasonable? 

2. Investing in high quality schemas will make a difference. We have well defined, high 
quality schemas around farm management data with the Common Farm Convention.  
However, we also know that the flexibility to quickly create (for example) a spreadsheet 
as the data model can make this technology more accessible and flexible. What are the 
use cases we should focus on (longer-term, high quality CFC, shorter term and more 
immediately, flexible, but maybe lower quality (?) spreadsheets)? 

3. Let’s review translations and confirm quality minimums. Are these translations good 
enough? Are the types of failures acceptable, or particularly bad (making the AI tool not 
worth it). 

 
Recommendations 
 
Overall, we feel that with appropriate adjustments based on what we’ve learned and the list of 
Conclusions above, consistent performance of 90% or higher is possible.  This exceeds the 
performance level minimum (ranging from 60 - 90%) identified by the NAPDC interview group 
during needs assessment.  We feel that continuing progress could achieve real, usable MVPs 
by the NAPDC cohort (subject also to the questions above).  Given that, we recommend: 
 

1. Further investigate Claude or other direct JSON Schema options. If we want a great deal 
of flexibility, we need to avoid the conversion of JSON Schema → Python classes 
needed currently to utilize GPT o1’s Structured Data Mode. If we avoid this step, the AI 
solution could be ‘plug and play’ relative to the data model, allowing for more testing on 
more data models by more people more easily. 

a. Also add a validation function accessible by Claude. 
2. Constrain the interviews - give the TAP a printed, easy to read version of the data model 

to review during the interview, and teach the interviewer to prompt key pieces of 
information. 

a. Improve the quality of passed metadata - so the current date, a DB of people + 
roles, list of fields and plantings from their DB. 



 

3. Improve the schemas or just use Common Farm Convention schemas so the data is 
specific and well described. 

4. Design around specific input SOPs - for example, I want to add new logs / assets 
through an interview which may reference historical fields and plantings (which can be 
pulled in from my FMIS).  In this case, no editing, no multiple back-and-forths or queries, 
references are all present or generated on the fly.  Or - I want to add a new row to the 
baserow database and may want to reference another base which is available in 
context. 

5. We should pull from the database for context to populate more accurate context.  
Specifically, a list of names/roles, a list of fields, and a list of plantings.  Also tools for 
validation 

Future Outcomes 
Assuming a completion of the recommendations and some level of funding (dependent on exact 
applications, feedback from the group, and scope), we believe that we can achieve the 
following: 
 

1. Create at least one real world, usable MVP translating unstructured data to structured 
data similar to the example cases described above. 

2. Assemble the tools and SOPs to make creating new AI unstructured -> structured data 
MVP applications significantly easier to achieve, faster to evaluate, and lower risk of 
unexpected failure. 
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Appendix  

Full Parameter Description  
1. Schema Processing Model  

a. The schema processing model refers to the model which is used to generate the 
JSON schema output. We used the most up to date versions of OpenAI’s 
chatGPT which were capable of “JSON mode” structured output. One of the 
model’s was 'gpt-4o-2024-08-06' which is the ‘full model’ with higher processing 
capabilities and 'gpt-4o-mini-2024-07-18' a smaller, faster model.  

2. Pre-processing Strategy  
a. For some of the test recipes, we pre-processed the data prior to creating the 

JSON schema. There were pre-processing strategies which first processed the 
data in some manner through an LLM (from the options of the GPT models 
above). There were also pre-processing strategies which involved either otter.ai 
or a human summarizing the interaction as input.  

b. Full pre-processing strategies attempted:  
i. Summarization pre-processing (through GPT model): 

1. You are given a block of text containing detailed farm 
management data, interactions, or trial and treatment descriptions. 
Your task is to generate a concise summary of the text, focusing 
on the main points and removing unnecessary details. Ensure that 
the summary captures the essential information that will be useful 
for the next model to process it into structured data. 

a. The summary should include: 
● The primary field or subject (e.g., farm name, 

interaction, trial name) 
● Key attributes or details (e.g., crops, treatments, 

soil, participants) 
● Any specific action or outcome (e.g., meeting 

dates, crop yield, next steps) 

Keep the summary brief and informative, maintaining the 
most important information for further processing. 

ii. Otter.ai summary (provided from otter.ai interface automatically) 
iii. Greg summary (interaction was summarized by the human Greg as 

input) 
iv. Specific Field Extraction: 

1. You are given a block of text containing detailed information. Your 
task is to extract and structure the following specific fields: 

a. For Farm Management Data: 
● Field Name: The name of the field. 



 

● Description: Any description of the field (e.g., 
planting year, soil conditions). 

● Crops: The types of crops planted (e.g., squash, 
soybeans). 

● Soil Conditions: The type of soil described (e.g., 
loam, sandy). 

● Yield: The quantity and quality of the yield (e.g., 
average, some early rotting). 

For Interaction Data: 

● Date: The date of the interaction. 
● Next Meeting: Any future meeting dates or ranges. 
● Next Steps: The follow-up actions mentioned. 
● Summary: A brief summary of the interaction. 
● People: Names and roles of people involved. 

For Trial and Treatment Data: 

● Trial Name: The name of the trial. 
● Description: A description of the trial. 
● Treatments: The treatments used in the trial. 
● Crops: The crops involved in the trial. 

Please extract these fields and return them in a structured 
format. If any fields are missing, leave them blank. 

v. Contextual Tagging:  

You are given a block of text. Your task is to tag each part of the text with 
appropriate labels, such as: 

● Location: Tag locations where mentioned. 
● Date: Tag dates or time ranges. 
● Action: Tag actions or verbs that indicate activity (e.g., "planting", 

"harvesting"). 

Return the text with these labels inserted, marking the relevant parts 
clearly. 

c. Prompting Strategy:  
i. The last parameter we tested was prompting strategies, which was similar 

to our pre-processing prompting strategy, but included a wider range of 
options. We also had to ensure we had different prompts for each of the 
schemas, which are slightly tweaked for the differences in wording 



 

between the Plantings and Fields Schema, Interactions Schema, and 
Treatments Schema.:  

1. Baseline Approach (Default) 
a. Plantings and Fields:  

i. Please extract the farm management data. 
b. Interactions:  

i. Please extract the interactions and people data. 
c. Treatments: 

i. Please extract the trials and treatment data. 
2. Baseline Approach - Additional Context 

a. Plantings and Fields:  
i. The following is a written transcript of an interaction 

between a Technical Assistance Provider (TAP) 
and a producer. The people in this interaction are 
discussing an experiment. You will be creating 
structured JSON output based on the discussion of 
the experiment, which should result in a structured 
JSON schema for the fields and plantings 
discussed. This JSON schema should include 
extracted details like the field name, description of 
the field, the types of crops and plantings and soil 
conditions. 

b. Interactions:  
i. The following is a written transcript of an interaction 

between a Technical Assistance Provider (TAP) 
and a producer. The people in this interaction are 
discussing an experiment. You will be creating 
structured JSON output based on the discussion of 
the experiment, which should result in a structured 
JSON schema for the interaction discussed. This 
JSON schema should include extracted details like 
the meeting date, the date of the next meeting, a 
list of people involved in the interaction along with 
their roles, and a summary of the interaction. 

c. Treatments:  
i. The following is a written transcript of an interaction 

between a Technical Assistance Provider (TAP) 
and a producer. The people in this interaction are 
discussing an experiment. You will be creating 
structured JSON output based on the discussion of 
the experiment, which should result in a structured 
JSON schema for the trials and treatments 
discussed. This JSON schema should include 
extracted details like the name of the trial, a 



 

description of the trial, the treatments that are being 
tested in the trial, and a list of the crops involved in 
each treatment. 

3. Full Additional Context - Rules and Constraints 
a. Plantings and Fields:  

The following is a written transcript of an interaction 
between a Technical Assistance Provider (TAP) and a 
producer. The people in this interaction are discussing an 
experiment. You will be creating structured JSON output 
based on the discussion of the experiment, which should 
result in a structured JSON schema for the fields and 
plantings discussed. This JSON schema should include 
extracted details like the field name, description of the field, 
the types of crops and plantings and soil conditions. 

Rules and Constraints: 

1. There should be a separate Planting for each 
FarmActivities if there is a different crop type, day 
or time or crop variety. This is an account of each 
time a Planting occurs as an activity. 

2. Each planting must have a Planting Log with the 
convention = "log--activity--planting". 

3. For each application of an Input like herbicides, 
irrigation, or fertilizers are discussed, create Input 
logs with the appropriate conventions: 
Herbicide/Pesticide: 
log--input--herbicide_or_pesticide 
Irrigation: log--input--irrigation 
Organic Matter: log--input--organic_matter 

4. Tillage Log: If tillage is mentioned, create a log with 
convention = "log--activity--tillage" 

5. Irrigation Log: If irrigation is discussed, create a log 
with convention = "log--input--irrigation" 

6. Solarization Log: For solarization, use convention = 
"log--activity--solarization" 

b. Interactions:  

The following is a written transcript of an interaction 
between a Technical Assistance Provider (TAP) and a 
producer. The people in this interaction are discussing an 
experiment. You will be creating structured JSON output 
based on the discussion of the experiment, which should 
result in a structured JSON schema for the interaction 



 

discussed. This JSON schema should include extracted 
details like the meeting date, the date of the next meeting, 
a list of people involved in the interaction along with their 
roles, and a summary of the interaction. 

Rules and Constraints: 

1. There should be a separate Person for each 
different Person mentioned during the interaction 
who is involved with the current interaction. 

2. The nextMeeting of the Interactions should be the 
date that is scheduled for the producer to next meet 
with the TAP. If none is explicitly provided, the 
nextMeeting date should be null. 

3. The nextMeeting of the Interactions should occur 
after the current meeting date. 

4. The nextSteps should be a list of individual steps 
that the people involved in the interaction will have 
to take to complete the trial which will occur after 
the interview. 

5. The summary should be everything that occurred in 
the interaction, taking in account special attention 
to the field and plantings and treatments and 
outcomes of the trial taking place. 

c. Treatments:  

The following is a written transcript of an interaction 
between a Technical Assistance Provider (TAP) and a 
producer. The people in this interaction are discussing an 
experiment. You will be creating structured JSON output 
based on the discussion of the experiment, which should 
result in a structured JSON schema for the trials and 
treatments discussed. This JSON schema should include 
extracted details like the name of the trial, a description of 
the trial, the treatments that are being tested in the trial, 
and a list of the crops involved in each treatment. 

Rules and Constraints: 

1. For each independent variable which is being 
tested in the trial, there should be a Treatment. 

2. Each Treatment should contain a list of crops and 
fields involved in the specific variables being tested 
in the Treatment. For example, if the amount of 
irrigation is being tested, there should be a 



 

Treatment with Variables accounting for the 
controlled variables, which are unchanging, and the 
independent variable which is the one specifically 
being tested in the Treatment. 

3. Each Variables outcome should be the projected 
hypothesized outcome based on the what the 
people theorized would occur during the interaction, 
if explicitly mentioned. 

4. Example-Driven 
a. Plantings and Fields:  

i. Prompt: 
"Please extract farm management data, including 
field name, description, crop types, and soil 
conditions in a structured JSON format." 

ii. Example Input: 
"North Field, planted in 2016, grew acorn squash in 
2023. Soil: loam, sandy in spots. Yield: average, 
some early rotting." 

iii. Example Output (JSON): 
iv. { 

"name": "North Field", 
"description": "Planted in 2016", 
"plantings": { 
"name": "2023 Squash", 
"crop": ["squash"], 
"variety": ["acorn squash"], 
"soil": { 
"structure": ["loam", "sand"] 
}, 
"yield": { 
"quantity": "average", 
"quality": "some early rotting" 
} 
} 
} 

b. Interactions:  
i. Prompt: 

"Please extract interaction data including date, 
participants, next meeting, next steps, and a 
summary in JSON format." 

ii. Example Input: 
"Meeting with Ben Austic on 2023-10-25. Next 
meeting: 2023-11-15 to 2023-12-25. Discuss 
soybean trial results and follow up with Ben." 



 

iii. Example Output (JSON): 
iv. { 

"date": "2023-10-25", 
"nextMeeting": "2023-11-15 to 2023-12-25", 
"nextSteps": [ 
"Follow up with Ben Austic to evaluate soybean 
trial." 
], 
"summary": "Meeting with Ben Austic to discuss 
soybean trial results.", 
"people": { 
"name": "Ben Austic", 
"role": "partner" 
} 
} 

c. Treatments:  
i. Prompt: 

"Please extract trial and treatment data including 
trial name, description, treatments, and crops in 
JSON format." 

ii. Example Input: 
"Ben's soybean trial compares two seedling 
treatments: fungicide, herbicide, and biologicals for 
early immune boost. Trial includes soybeans." 

iii. Example Output (JSON): 
iv. { 

"name": "Ben's Soybean Seedling Trial", 
"description": "Comparing two seedling treatments 
with fungicide, herbicide, and biologicals.", 
"treatments": { 
"name": "Seedling Treatment", 
"description": "Includes fungicide, herbicide, 
biologicals for immune boost.", 
"crops": ["Soybeans"] 
} 
} 

5. Step-by-Step Instructional 
a. Plantings:  

i. Please extract the farm management data. Identify 
the activity mentioned (e.g., planting, irrigation, 
harvest, etc.). 
Extract the date of the activity. 
Note the weather conditions during the activity. 
Identify the soil type or field conditions mentioned. 



 

Summarize the activity, including all of the details 
above. 

b. Interactions:  
i. Please extract the interactions and people data. 

Identify the people mentioned in the text and their 
roles (e.g., partner, agronomist, staff). 
Note the date of the interaction. 
Summarize the content of the interaction (what was 
discussed or decided). 
Extract any next steps or follow-up tasks mentioned 
in the text. 
Return the information in a structured format with 
names, roles, and any tasks or meetings 
scheduled. 

c. Treatments:  
i. Please extract the trials and treatments data. 

Identify the trial name and description. 
Extract the date and treatments applied (e.g., 
herbicide, irrigation). 
List the crops and fields involved in the treatment. 
Note any expected outcomes or observations 
related to the treatment. 
Return the extracted details in a structured format 
including the trial name, treatments, crops, and 
expected outcomes. 

6. Role-Specific (Agronomist) 
a. Plantings and Fields:  

i. As an agronomist, you need to extract farm 
management data. Focus on operational activities 
and key practices. For each activity, include the 
crop types involved, the date, the specific action 
(e.g., seeding, irrigation), and the status of the 
activity (e.g., ongoing, completed). Capture any 
relevant observations, such as soil conditions or 
pest presence, and organize the data into a 
structured JSON format. 

b. Interactions:  
i. As an agronomist, extract data related to 

interactions between farm staff. Focus on key 
meetings, collaborations, and future tasks. Include 
names of people involved, their roles, and any 
important follow-up actions. Format the data into a 
structured JSON format to capture the relevant 
details. 



 

c. Treatments:  
i. As an agronomist, you are responsible for 

extracting trials and treatment data. Focus on 
ongoing field trials, including the treatments used, 
the crops involved, and the objectives of the trial. 
Ensure to capture the treatment details, including 
any chemicals or biological agents, and their effects 
on crop growth. Present the data in a structured 
JSON format for easy analysis. 

7. Role-Specific (Data Scientist) 
a. Plantings and Fields:  

i. As a data scientist, your task is to extract farm 
management data and format it for analysis. Focus 
on identifying key operational activities, such as 
seeding or irrigation, and provide data on the crop 
types involved, date, and the status of each activity. 
Ensure that the data is organized in a way that can 
be easily analyzed for trends and decision-making. 

b. Interactions:  
i. As a data scientist, you will extract interaction data 

between farm staff to help analyze team dynamics 
and decision-making. Capture details on meetings, 
the roles of attendees, and any action items 
discussed. The data should be structured in a 
JSON format for easy integration into workflow 
analysis tools 

c. Treatments:  
i. As a data scientist, you need to extract and analyze 

trial and treatment data. Focus on ongoing trials, 
capturing the types of treatments used, the crops 
involved, and the desired outcomes. Ensure that 
you gather detailed information on all experimental 
factors, including treatment variations, to facilitate a 
comprehensive analysis of their effectiveness. 

8. Error Detection:  
a. Plantings and Fields:  

i. Please extract the farm management data. 
If any important detail (such as the date, activity 
type, or crop) is missing from the text, flag it as 
incomplete. 
Also, check that the activity has a clear description. 
If there are discrepancies in soil types or field 
descriptions, indicate them as potential errors for 
review. 



 

b. Interactions:  
i. Please extract the interactions and people data. 

If the roles or names of the participants are missing 
or unclear, flag them as incomplete. 
Verify that the date and next steps are clearly 
mentioned; if they are absent or ambiguous, 
highlight them for review. 

c. Trials and Treatments:  
i. Please extract the trials and treatments data. 

Ensure that the trial name and description are 
complete. If the treatment type, date, or expected 
outcomes are missing or unclear, flag them as 
errors. 
If the crops or fields involved are not specified, 
mark it as incomplete. 

9. CO-STAR Framework 
a. Plantings and Fields:  

CONTEXT 

You are tasked with extracting farm management data, 
including details about activities such as planting, irrigation, 
and harvesting, as well as information on crops, soil 
conditions, and weather. This data is used for farm 
reporting and analysis. 

############## 

OBJECTIVE 

Your goal is to extract and structure farm management 
data: 

● Identify activities like seeding, irrigation, and 
harvesting. 

● Extract the date of each activity. 
● Note the crops involved in the activity. 
● Extract information regarding soil conditions, 

structure, and biology. 
● Capture any relevant weather information during 

the activity. 
● Summarize yield information, including quantity and 

quality. 



 

############## 

STYLE 

Provide the data in a structured format, ensuring that all 
relevant details are captured concisely and without 
unnecessary elaboration. Focus on accuracy and clarity. 

############## 

TONE 

The tone should be neutral, focusing on providing an 
accurate and objective summary of farm activities and 
conditions. 

############## 

AUDIENCE 

This data is intended for agronomists, farm managers, and 
data analysts who need a structured overview of farm 
activities for reporting and decision-making. 

############## 

RESPONSE 

Provide the extracted data in JSON format, following the 
provided schema for farm management. Ensure that all 
relevant fields are populated and the data is easy to 
interpret. 

b. Interactions:  

CONTEXT 

You are tasked with extracting interactions and people data 
from text that describes farm-related meetings, 
collaborations, and follow-up actions. This includes 
identifying people, their roles, and summarizing what was 
discussed or decided during the interaction. 



 

############## 

OBJECTIVE 

Your goal is to extract and structure interactions and 
people data: 

● Identify the names of people involved in the 
interaction. 

● Extract the roles of the people mentioned (e.g., 
partner, agronomist, staff). 

● Note the date of the interaction or meeting. 
● Summarize the content of the interaction, such as 

what was discussed, decided, or planned. 
● Identify any next steps or follow-up tasks that were 

agreed upon. 

############## 

STYLE 

The style should be factual and concise, capturing the key 
details of the interaction without unnecessary elaboration. 
Focus on the essential points of the discussion and 
follow-up actions. 

############## 

TONE 

The tone should remain neutral and objective, focusing on 
providing an accurate summary of the interaction and any 
planned follow-up actions. 

############## 

AUDIENCE 

This data is intended for farm managers, team leads, or 
other personnel tracking team interactions and ensuring 
follow-up on tasks or meetings. 

############## 



 

RESPONSE 

Provide the extracted interaction and people data in JSON 
format, following the provided schema. Ensure that all 
fields are filled accurately and the information is easy to 
interpret. 

c. Treatments:  

CONTEXT 

You are tasked with extracting data related to agricultural 
trials and treatments, including the details of the trials, the 
treatments applied, and the crops involved. This data is 
used to monitor and analyze the effectiveness of different 
treatments on crop growth. 

############## 

OBJECTIVE 

Your goal is to extract and structure trial and treatment 
data: 

● Identify the name and description of the trial. 
● Extract the date of the trial and any treatments 

applied (e.g., herbicides, biologicals). 
● Note the crops and fields involved in the trial. 
● Capture any expected outcomes or observations 

related to the trial and treatments. 

############## 

STYLE 

The style should be clear and focused, with descriptions 
that are concise and to the point. Ensure that all key details 
are captured in a structured manner. 

############## 

TONE 



 

The tone should be objective and technical, providing an 
accurate and neutral report of the trials, treatments, and 
expected outcomes. 

############## 

AUDIENCE 

This data is intended for agricultural researchers, 
agronomists, and farm managers who are tracking the 
progress and outcomes of field trials. 

############## 

RESPONSE 

Return the extracted trial and treatment data in JSON 
format, adhering to the provided schema. Ensure all 
relevant fields are populated and the data is clearly 
structured. 
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